

Test Report

Assignor:

Material:

Sampling:

Method:

Report No.: 809785T3-AB

Gregersensvej DK-2630 Taastrup Tel. +45 72 20 20 00 Fax +45 72 20 20 19

info@teknologisk.dk www.teknologisk.dk

GRID System Aps Smedevangen 2 3540 Lynge	Page 1 of 1 Hbk/nmlł Order no.: 809785 No. of appendices: 3
Lacquered MDF, 376x376x12. Article name: Shelf/side. Article number:	SS.MX
The test material was sampled by the assignor and received in cardboard Technological Institute 2018-06-07.	d at the Danish
ANSI/BIFMA M7.1-2011 (R2016) – Standard test method for determining from office furniture systems, components and seating.	g VOC emissions

- Period:The chamber testing was carried out from 2018-06-18 to 2018-06-25.The analysis of air samples was carried out from 2018-06-27 to 2018-07-11.
- **Result:** The VOC emissions for the tested sample after 168 hours (7 days) in the chamber were:

	Emission factor (E)	Maximum E	Evaluation
		Furniture Components*	
TVOC(toluene):	1.6 mg/m ² h	≤ 0.345 mg/m²h	Fail
Formaldehyde:	23 µg/m²h	≤ 42.3 µg/m²h	Pass
Total aldehydes:	4.0 µmol/m ² h	≤ 2.8 µmol/m²h	Fail
4-Phenylcyclohexene:	< 1 µg/m²h	≤ 4.5 µg/m²h	Pass

Results in detail are shown in Appendices 2 and 3.

*ANSI/BIFMA ANSI/BIFMA X7.1-2011 – Standard for formaldehyde and TVOC emissions of low-emitting office furniture and seating. Table A1.2: Individual furniture Components Maximum Emission Factors at 168 hours.

- **Storage:** The test material will be destroyed after the issue of this test report.
- **Terms:** The testing is only valid for the tested specimen. The test report may only be extracted, if the laboratory has approved the extract.
- Date/place: 2018-07-13, Danish Technological Institute, Wood and Biomaterials, Taastrup

Holene Bendstrup Klinke Ph. Direct: 145-71-20-21-73.

Ph. Direct: 145 71 20 21 73 Ektral litik@teintelogisk.dr

Watan (U.L

Natariya Majbritt Louie Hansen Ph. direct: +45 72 20 11 60 E-mail: nmlh@teknologisk.dk

Co-signatory

Signature:

Test responsible

Material identification

Report no.: Appendix: Page: Initials: 809785T1-AB 1 1 of 1 Hbk/nmlh

Sample information given by assignor:

Product: Lacquered MDF, 376x376x12

Article name: Shelf/side

Article number: SS.MX

Production date: 24/5 (2018-05-24)

Sampling date: 29/5 (2018-05-24) – GRID Warehouse, Smedevangen 2, 3540 Lynge

Sampled by: Søren Ahlfors

Sample handling:

Prior to testing the wrapped samples were stored at the test laboratory at 20-25 °C.

Emission testing

Report no.: Appendix: Page: Initials: 809785T1-AB 2 1 of 1 Hbk/nmlh

The test material was unwrapped and placed in the chamber.

Photo of test material in the chamber:

Climate chamber Temperature Relative humidity Air velocity at the surface of the specimen Air change rate (n) Material load (L) Area specific air flow rate (q) 113 L Polished stainless steel 23°C \pm 1°C 50% RH \pm 5% RH 0.1 – 0.3 m/s 1.0 h⁻¹ \pm 0.05 h⁻¹ 1.0 m²/m³ 1.0 m³/m²h

The test material was tested in the emission chamber without prior conditioning.

Sampling and analytical methods of air samples:

	Method	Absorbent	Sampling volume	Quantification/Analysis method	Detection limit
VOC and Carcinogens	ISO 16000-6	Tenax TA	4 L	TDS-GC/MS Calibrated with pure reference standards	1 µg/m³
Formaldehyde and carbonyls	ISO 16000-3	DNPH coated silica gel	60 L	HPLC-DAD Calibrated with pure reference standards	1 µg/m³

Emission of volatile organic compounds

809785T1-AB
3
1 of 2
Hbk/nmlh

The applied test conditions result in an area specific air flow rate of $q = 1.0 \text{ m}^3/\text{m}^2\text{h}$. Thus, the measured concentrations (C) in μ g/m³ of volatile compounds are equal to the surface area specific emission rate i.e. emission factor (E) in μ g/m²h. The emission factor approach is applied for measurement and evaluation of individual furniture components.

Results from the VOC analysis appears from Table 1.

Method: ISO 16000-6: 2011. Indoor air – Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID.

Analysis of the air sampled on Tenax was performed at the Wilhelm Klauditz Institut (WKI) under DAkkS accreditation number D-PL-11140-05-02. Report no. MAIC-2018-2903.

Table 1: Concentrations of volatile organic compounds (VOCs) between n-C6 and n-C16 measured by GC-MS (μ g/m²h)*

	72 hrs (3 days)				168 hrs (7 days)			
Chemical class/compound name	#1 #2 Mean % diff				#1	#1 #2 Mean % diff		
Aromatic hydrocarbons								
Toluene	2	< 1	1	200	< 1	< 1	<1	0
Aliphatic hydrocarbons	<1	<1	<1	0	<1	<1	<1	0
Cycloalkanes	<1	<1	<1	0	<1	<1	<1	0
Terpenes	<1	<1	<1	0	<1	<1	<1	0
Alcohols								
n-Butanol	2	2	2	0	< 1	< 1	<1	0
1-Methoxy-2-propanol	14	13	14	7	6	5	6	18
1,2-Propanediol	363	340	352	7	178	155	167	14
Phenol	6	5	6	18	4	4	4	0
2-Ethyl-1-hexanol	2	2	2	0	1	2	2	67
2,4,7,9-Tetramethyl-5-decyne-4,7-diol	41	38	40	8	28	27	28	4
2,6-Di-tert-butyl-4-methylphenol (BHT)	2	2	2	0	1	1	1	0
Glycols/Glycol ethers								
Butylglycol	638	566	602	12	270	244	257	10
DPGMME (mixture of isomers)	796	708	752	12	419	390	405	7
Hexylglycol	5	4	5	22	2	2	2	0
Butyldiglycol	44	40	42	10	23	21	22	9
Diethylene glycol hexyl ether	9	9	9	0	6	6	6	0
Aldehydes								
Benzaldehyde	5	4	5	22	3	3	3	0
2,4,6-Trimethyl benzaldehyde	4	3	4	29	2	2	2	0
Ketones								
Cyclohexanone	9	8	9	12	5	4	5	22
Acetophenone	4	4	4	0	2	2	2	0
2-Hydroxy-2-methylpropiophenone (Darocur								
1173)	801	736	769	8	548	503	526	9
Halocarbons	<1	<1	<1	0	<1	<1	<1	0
Acids								
Acetic acid	47	31	39	41	31	34	33	9
Esters								
n-Butyl acetate	11	10	11	10	4	4	4	0
1-Methoxy-2-propyl acetate	149	130	140	14	73	70	72	4
Methyl benzoate (Toluene)	13	12	13	8	6	5	6	18
Ethylhexyl acrylate	17	15	16	13	10	9	10	11

Emission of volatile organic compounds

Report no.: Appendix: Page: Initials: 809785T1-AB 3 2 of 2 Hbk/nmlh

	72 hrs (3 days)				168 hrs (7 days)			
Chemical class/compound name	#1	#2	Mean	% diff	#1	#2	Mean	% diff
Dipropylene glycol diacrylate	22	20	21	10	17	15	16	13
Benzoic acid ester (Toluene)	22	16	19	32	16	14	15	13
Others								
alpha-Terpineol	9	8	9	12	5	5	5	0
Triethylamine	49	47	48	4	28	25	27	11
Nitrogenous substance or siloxane (Toluene)	5	4	5	22	3	3	3	0
N-Formylmorpholine (Toluene)	9	8	9	12	6	5	6	18
Nitrogenous substance ? (Toluene)	4	4	4	0	2	2	2	0
Methoxyphenol ? (Toluene)	10	9	10	11	7	7	7	0
Acrylate ? (Toluene)	16	14	15	13	11	10	11	10
Dipropylene glycol butyl ether (mixture of isomers) ?	6	5	6	18	4	4	4	0
Acrylate ? (Toluene)	7	6	7	15	4	4	4	0
Sum other sesquiterpenes:	2	2	2	0	2	2	2	0
Sum unidentified compounds:	9	9	9	0	6	6	6	0
Sum VOC (C6-C16):	3154	2834	2994	11	1733	1595	1664	8
Sum of VOC (C6-C16) as TVOC Toluene according to DIN EN ISO 16000-6:	2821	2524	2673	11	1635	1515	1575	8

Single substances/volatile compounds were quantified with pure reference standards, and in some cases the substances shown in subscript were used for the quantification.
< 1 Not detected (< 1 µg/m³)

Measured concentrations just above limit of quantification (LOQ) of 1 μ g/ m²h will result in higher standard deviation from mean value.

Definitions according to ISO 16000-6:

VOC (C6-C16):	Volatile organic compounds, between hexane (C6) and hexadecane (C16)
VVOC (<c6):< td=""><td>Very volatile organic compounds, eluting before hexane, not included in TVOC</td></c6):<>	Very volatile organic compounds, eluting before hexane, not included in TVOC
SVOC (>C16):	Semi-volatile organic compounds, eluting after hexadecane, not included in TVOC
TVOC:	Total volatile organic compounds is the sum of all VOCs eluting between C6 and C16, quantified as toluene equivalents.

Results from aldehyde analysis are shown in Table 2.

Method: ISO 16000-3: 2011. Indoor Air – Part 3: Determination of formaldehyde and other carbonyl compounds – Active sampling method.

Analysis of the air sampled on DNPH was performed at the Danish Technological Institute under DANAK accreditation number 90. Report no. 820269.

Table 2: ISO 16000-3 Lower aldehydes by HPLC analysis ($\mu g/m^2h$)*

		72 hrs (3 days)				168 hrs (7 days)			
Compound name	#1	#1 #2 Mean % diff #1 #2						% diff	
Formaldehyde	24	24	24	0	23	23	23	0	
Acetaldehyde	4.6	4.5	4.6	2	3.6	3.6	3.6	0	
Propanal	204	222	213	8	183	190	187	4	
Butanal	-	-	-	-	-	-	-	-	
Acrolein	-	-	-	-	-	-	-	-	

*Limit of detection (LOD) is 0.5 μ g/m3 (formaldehyde, acetaldehyde, butanal), 0.8 μ g/m3 (propanal) and 3.3 μ g/m3 (acrolein)